FAME: Fast Attribute-based Message Encryption

Shashank Agrawal

Melissa Chase

Research

Attribute-based Encryption

- Applications in a variety of settings:
 - network privacy [BBSBS09], pay-per-view broadcasting [TBEM08], health-record access control [APGLPR11, CDEN12], cloud security [SRGS12, verifiable computation [PRV12], forward-secure messaging [GM15], easy-to-use secure email [RAHZS16], ...

Attribute-based Encryption

- Applications in a variety of settings:
 - network privacy [BBSBS09], pay-per-view broadcasting [TBEM08], health-record access control [APGLPR11, CDEN12], cloud security [SRGS12, verifiable computation [PRV12], forward-secure messaging [GM15], easy-to-use secure email [RAHZS16], ...
- Not a surprise: Fine-grained control

Impact

• Limited impact on the real-world

Impact

- Limited impact on the real-world
- Central issues:
 - Strong security guarantee
 - Fast operations
 - Desirable features

• Simultaneously:

- Simultaneously:
 - No restriction on size of policies or attribute sets

- Simultaneously:
 - No restriction on size of policies or attribute sets
 - Any arbitrary string can be used as an attribute

- Simultaneously:
 - No restriction on size of policies or attribute sets
 - Any arbitrary string can be used as an attribute
 - Based on Type-III pairing groups

- Simultaneously:
 - No restriction on size of policies or attribute sets
 - Any arbitrary string can be used as an attribute
 - Based on Type-III pairing groups
 - Small number of pairings for decryption

- Simultaneously:
 - No restriction on size of policies or attribute sets
 - Any arbitrary string can be used as an attribute
 - Based on Type-III pairing groups
 - Small number of pairings for decryption
 - Satisfy the natural security requirement

- Simultaneously:
 - No restriction on size of policies or attribute sets
 - Any arbitrary string can be used as an attribute
 - Based on Type-III pairing groups
 - Small number of pairings for decryption
 - Satisfy the natural security requirement
 - under a standard hardness assumption + random oracle

- Simultaneously:
 - No restriction on size of policies or attribute sets
 - Any arbitrary string can be used as an attribute
 - Based on Type-III pairing groups
 - Small number of pairings for decryption
 - Satisfy the natural security requirement
 - under a standard hardness assumption + random oracle
- Improve upon popular and state-of-the-art schemes in several ways

Time to Upgrade!

- Ciphertext-policy ABE
 - Bethencourt, Sahai, and Waters, IEEE S&P, 2007
 - Our scheme: more secure, faster, lighter

ABE, formally

Attribute: property

Attribute: property

Policy: Boolean expression on attributes

Attribute: property

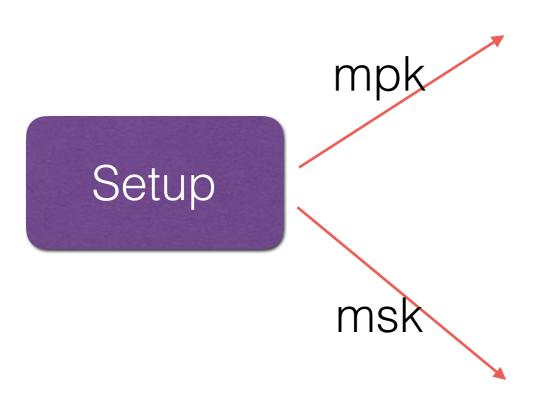
Policy: Boolean expression on attributes

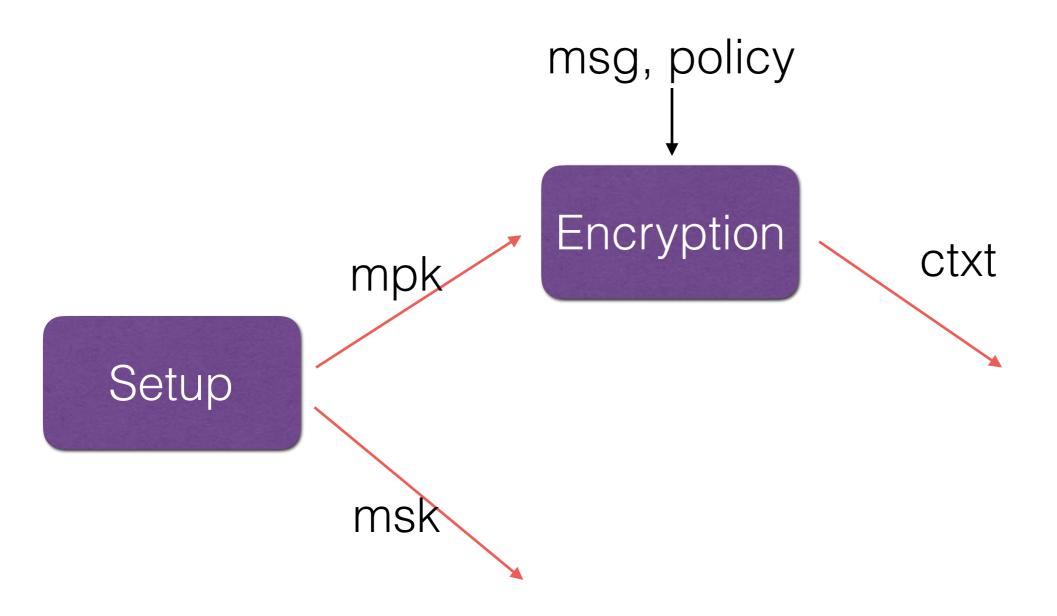
Zipcode:90240

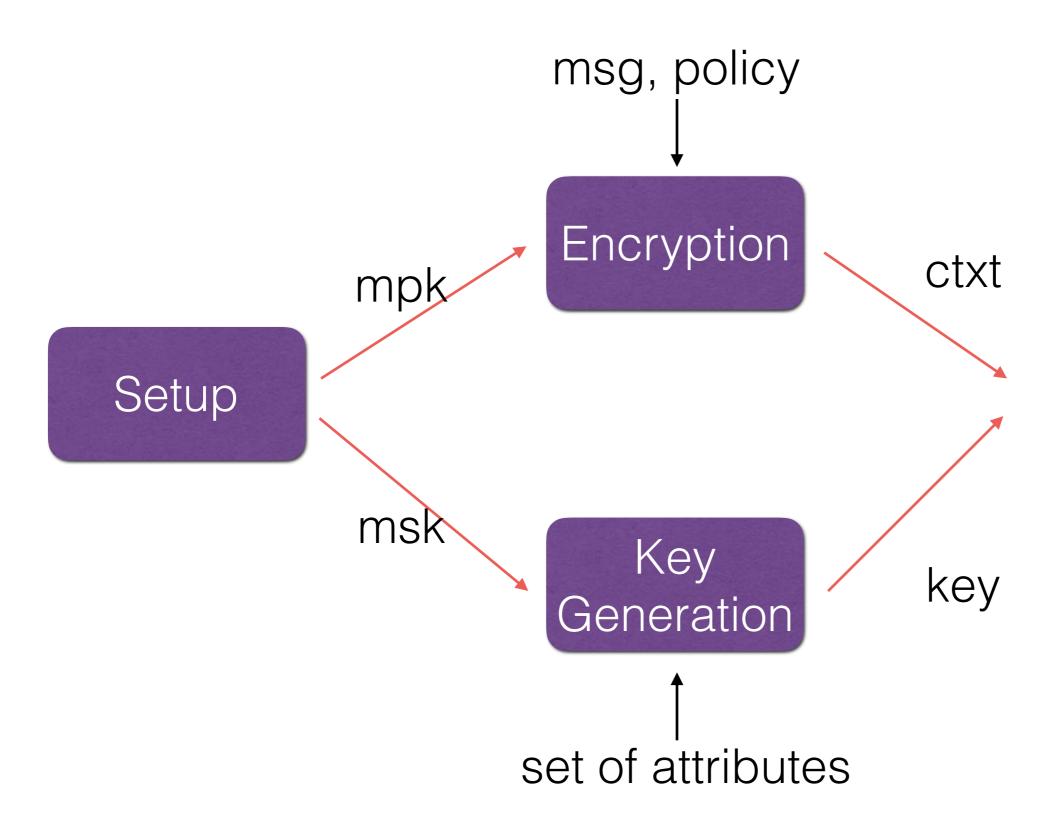
AgeGroup:Over65

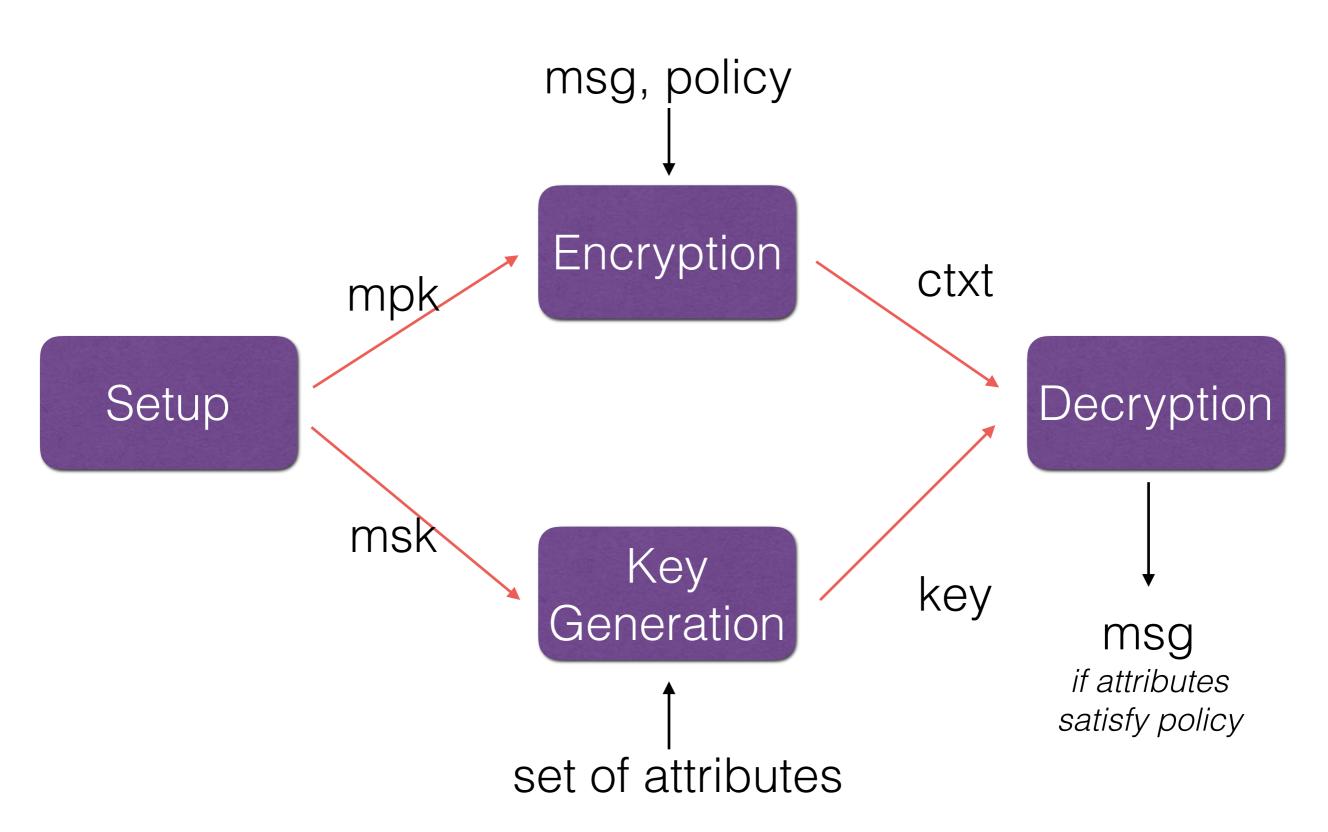
City:MountainView

Attribute: property


Policy: Boolean expression on attributes


Zipcode:90240


AgeGroup:Over65


City:MountainView

(Zipcode:90240 OR City:BeverlyHills) AND (AgeGroup:18-25)

Properties, we desire

 As institutions grow, more and more complex roles, entities, policies, procedures, etc.

- As institutions grow, more and more complex roles, entities, policies, procedures, etc.
- ABE schemes restrict policies, attributes

- As institutions grow, more and more complex roles, entities, policies, procedures, etc.
- ABE schemes restrict policies, attributes
- Bounds: number of attributes in a key, size of access policies in ciphertexts

- As institutions grow, more and more complex roles, entities, policies, procedures, etc.
- ABE schemes restrict policies, attributes
- Bounds: number of attributes in a key, size of access policies in ciphertexts
- Problems:
 - Limit expressiveness

- As institutions grow, more and more complex roles, entities, policies, procedures, etc.
- ABE schemes restrict policies, attributes
- Bounds: number of attributes in a key, size of access policies in ciphertexts
- Problems:
 - Limit expressiveness
 - Adversely effect the behavior: generous vs tight

- As institutions grow, more and more complex roles, entities, policies, procedures, etc.
- ABE schemes restrict policies, attributes
- Bounds: number of attributes in a key, size of access policies in ciphertexts
- Problems:
 - Limit expressiveness
 - Adversely effect the behavior: generous vs tight
- Our schemes: No restriction on size of attributes sets & policies

Attribute Usage

• Kind and number of attributes

Attribute Usage

- Kind and number of attributes
- Policy: (Zipcode:90240 OR City:BeverlyHills) AND (AgeGroup:18-25)

Attribute Usage

- Kind and number of attributes
- Policy: (Zipcode:90240 OR City:BeverlyHills) AND (AgeGroup:18-25)
- Issue keys for **every** zip-code and city

- Kind and number of attributes
- Policy: (Zipcode:90240 OR City:BeverlyHills) AND (AgeGroup:18-25)
- Issue keys for **every** zip-code and city
- ABE schemes are small universe

- Kind and number of attributes
- Policy: (Zipcode:90240 OR City:BeverlyHills) AND (AgeGroup:18-25)
- Issue keys for **every** zip-code and city
- ABE schemes are small universe
 - A-priori bound on number of different attributes

- Kind and number of attributes
- Policy: (Zipcode:90240 OR City:BeverlyHills) AND (AgeGroup:18-25)
- Issue keys for **every** zip-code and city
- ABE schemes are small universe
 - A-priori bound on number of different attributes
 - Size of public-key scales linearly

- Kind and number of attributes
- Policy: (Zipcode:90240 OR City:BeverlyHills) AND (AgeGroup:18-25)
- Issue keys for **every** zip-code and city
- ABE schemes are small universe
 - A-priori bound on number of different attributes
 - Size of public-key scales linearly
- 43000 zip-codes, 20000 cities

- Kind and number of attributes
- Policy: (Zipcode:90240 OR City:BeverlyHills) AND (AgeGroup:18-25)
- Issue keys for **every** zip-code and city
- ABE schemes are small universe
 - A-priori bound on number of different attributes
 - Size of public-key scales linearly
- 43000 zip-codes, 20000 cities
- Names, addresses? Hundreds of millions, grow rapidly

- Kind and number of attributes
- Policy: (Zipcode:90240 OR City:BeverlyHills) AND (AgeGroup:18-25)
- Issue keys for **every** zip-code and city
- ABE schemes are small universe
 - A-priori bound on number of different attributes
 - Size of public-key scales linearly
- 43000 zip-codes, 20000 cities
- Names, addresses? Hundreds of millions, grow rapidly
- Our schemes: arbitrary string can be an attribute

• Triple of groups $(\mathbb{G}, \mathbb{H}, \mathbb{G}_T)$

- Triple of groups $(\mathbb{G}, \mathbb{H}, \mathbb{G}_T)$
- Map $e: \mathbb{G} \times \mathbb{H} \to \mathbb{G}_T$

- Triple of groups $(\mathbb{G}, \mathbb{H}, \mathbb{G}_T)$
- Map $e: \mathbb{G} \times \mathbb{H} \to \mathbb{G}_T$
- Options:

- Triple of groups $(\mathbb{G}, \mathbb{H}, \mathbb{G}_T)$
- Map $e: \mathbb{G} \times \mathbb{H} \to \mathbb{G}_T$
- Options:
 - Composite-order: large representation, slow pairings

- Triple of groups $(\mathbb{G}, \mathbb{H}, \mathbb{G}_T)$
- Map $e: \mathbb{G} \times \mathbb{H} \to \mathbb{G}_T$
- Options:
 - Composite-order: large representation, slow pairings
 - Prime-order symmetric: security issues

- Triple of groups $(\mathbb{G}, \mathbb{H}, \mathbb{G}_T)$
- Map $e: \mathbb{G} \times \mathbb{H} \to \mathbb{G}_T$
- Options:
 - Composite-order: large representation, slow pairings
 - Prime-order symmetric: security issues
 - Prime-order asymmetric (Type-III)

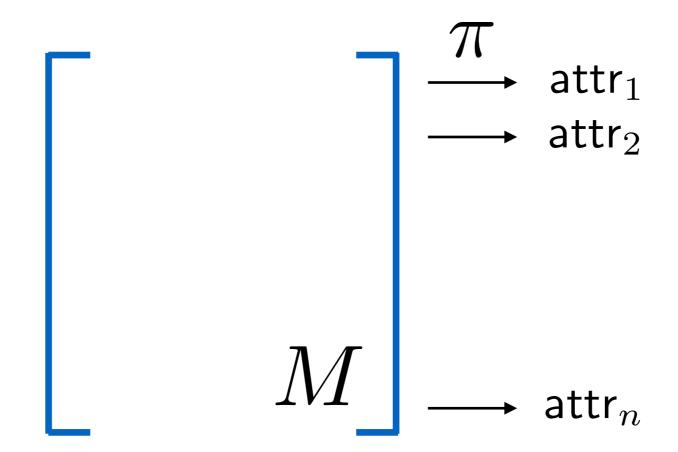
- Most important procedure
 - Computationally weak devices

- Most important procedure
 - Computationally weak devices
- Initial work: linear in the number of attributes

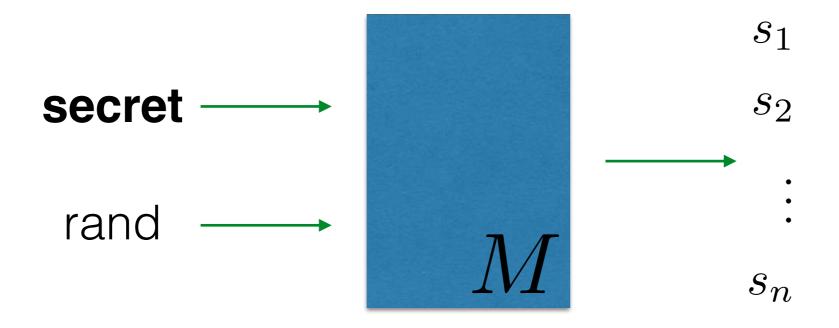
- Most important procedure
 - Computationally weak devices
- Initial work: linear in the number of attributes
- Our work: 6 pairing operations

- Natural requirement: Full/Adaptive security
 - Attack policy chosen adaptively

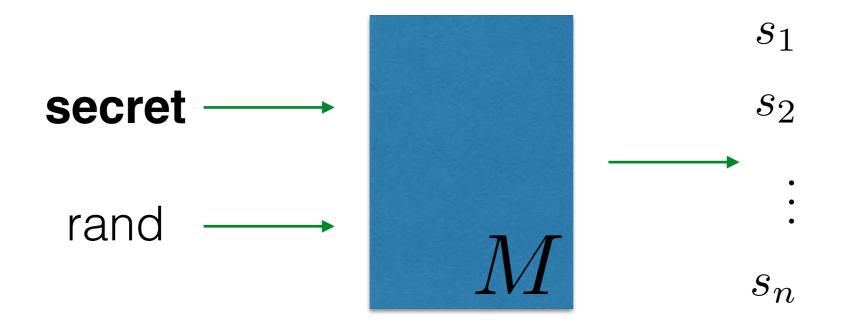
- Natural requirement: Full/Adaptive security
 - Attack policy chosen adaptively
- Unrealistic: Selective security
 - Policy declared upfront


- Natural requirement: Full/Adaptive security
 - Attack policy chosen adaptively
- Unrealistic: Selective security
 - Policy declared upfront
- Hardness assumption
 - Decisional linear (DLIN) vs q-type

Designing, our schemes


Boolean formulae: ANDs, ORs

- Boolean formulae: ANDs, ORs
- Monotone span programs (M,π)


- Boolean formulae: ANDs, ORs
- Monotone span programs (M,π)

Monotone Span Programs

Monotone Span Programs

set of attributes $S = \{ \mathsf{attr}_1, \mathsf{attr}_5 \}$ satisfies (M, π)

$$\frac{\text{linearly combine}}{s_1, s_5} \rightarrow \mathbf{secret}$$

set of attributes

```
S = \{\mathsf{attr}_1, \mathsf{attr}_5\}
```

set of attributes

$$S = \{\mathsf{attr}_1, \mathsf{attr}_5\}$$

$$\mathsf{key} = (\mathsf{sk}_1, \mathsf{sk}_5)$$

set of attributes

$$S = \{\mathsf{attr}_1, \mathsf{attr}_5\}$$

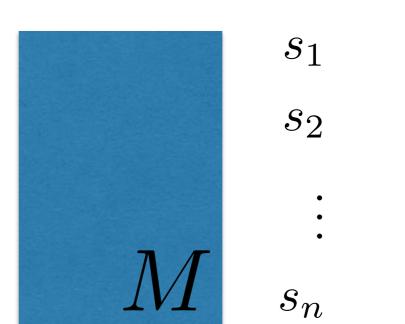
$$\mathsf{key} = (\mathsf{sk}_1, \mathsf{sk}_5)$$

msg

set of attributes

$$S = \{\mathsf{attr}_1, \mathsf{attr}_5\}$$

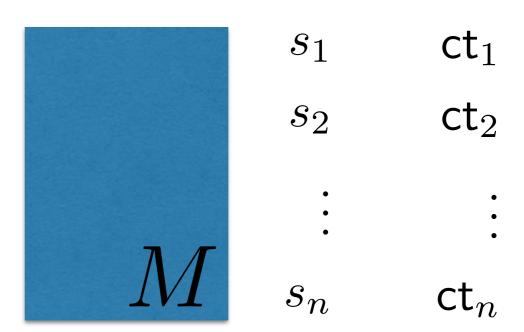
$$\mathsf{key} = (\mathsf{sk}_1, \mathsf{sk}_5)$$


msg **secret**

set of attributes

$$S = \{\mathsf{attr}_1, \mathsf{attr}_5\}$$

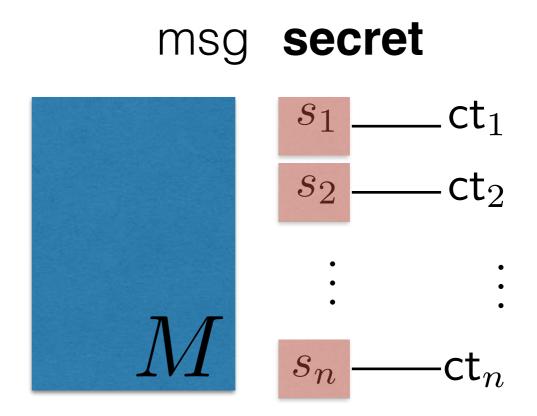
$$\mathsf{key} = (\mathsf{sk}_1, \mathsf{sk}_5)$$



set of attributes

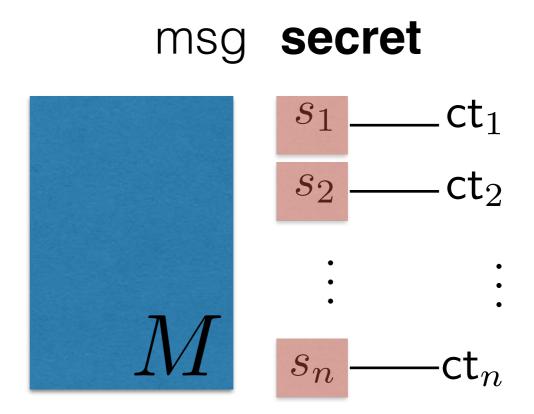
$$S = \{\mathsf{attr}_1, \mathsf{attr}_5\}$$

$$\mathsf{key} = (\mathsf{sk}_1, \mathsf{sk}_5)$$


msg secret

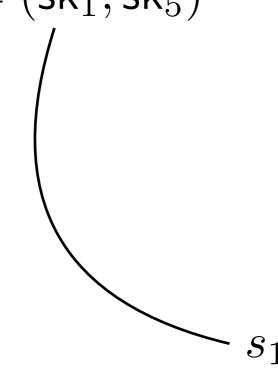
set of attributes

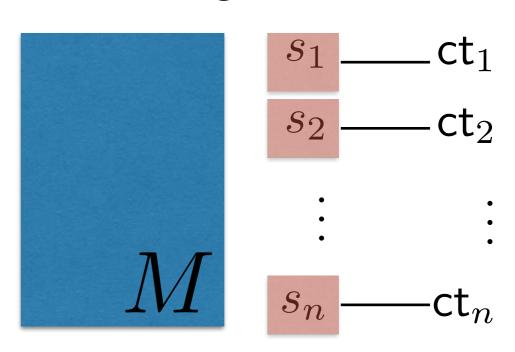
$$S = \{\mathsf{attr}_1, \mathsf{attr}_5\}$$


$$\mathsf{key} = (\mathsf{sk}_1, \mathsf{sk}_5)$$

set of attributes

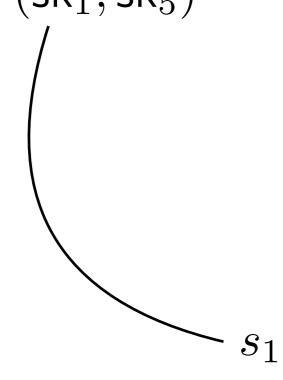
$$S = \{\mathsf{attr}_1, \mathsf{attr}_5\}$$

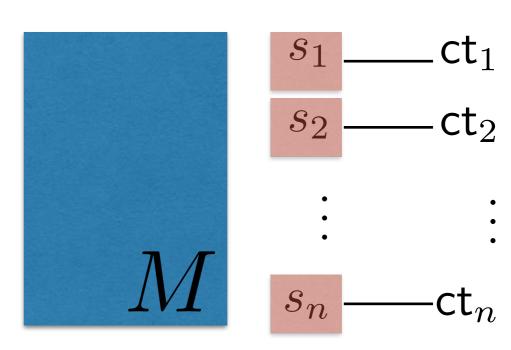

$$\mathsf{key} = (\mathsf{sk}_1, \mathsf{sk}_5)$$


set of attributes

$$S = \{\mathsf{attr}_1, \mathsf{attr}_5\}$$

$$\mathsf{key} = (\mathsf{sk}_1, \mathsf{sk}_5)$$

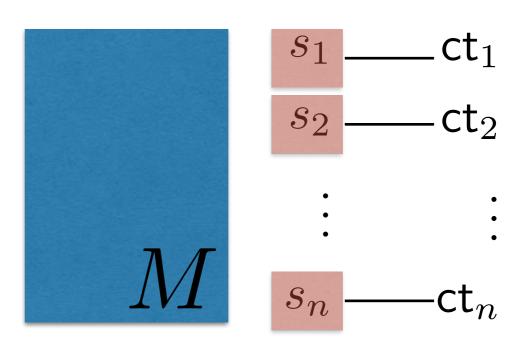

msg secret


set of attributes

$$S = \{\mathsf{attr}_1, \mathsf{attr}_5\}$$

$$\mathsf{key} = (\mathsf{sk}_1, \mathsf{sk}_5) \\ /$$

msg secret

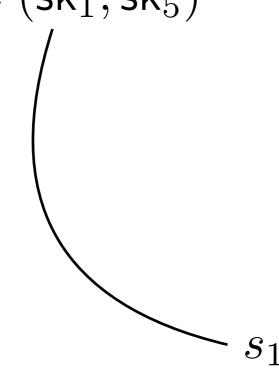


set of attributes

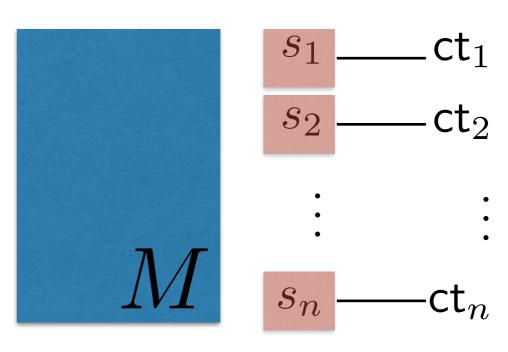
$$S = \{\mathsf{attr}_1, \mathsf{attr}_5\}$$

$$\mathsf{key} = (\mathsf{sk}_1, \mathsf{sk}_5)$$

msg secret



Masking values?


set of attributes

$$S = \{\mathsf{attr}_1, \mathsf{attr}_5\}$$

$$\mathsf{key} = (\mathsf{sk}_1, \mathsf{sk}_5)$$

msg secret

Masking values?

Public key

 Secure under k-linear assumption; Quite fast: Type-III pairings

- Secure under k-linear assumption; Quite fast: Type-III pairings
- Small universe; Restrictions on policies

- Secure under k-linear assumption; Quite fast: Type-III pairings
- Small universe; Restrictions on policies
- Overcome problems without compromising performance
 - Perform better on most metrics

$$e: \mathbb{G} \times \mathbb{H} \to \mathbb{G}_T$$

$$e: \mathbb{G} \times \mathbb{H} \to \mathbb{G}_T$$

Generators
$$g \in \mathbb{G}, h \in \mathbb{H}$$

$$[a]_1 \Rightarrow g^a$$

$$[b]_2 \Rightarrow h^b$$

$$e: \mathbb{G} \times \mathbb{H} \to \mathbb{G}_T$$

Generators
$$g \in \mathbb{G}, h \in \mathbb{H}$$

$$[a]_1 \Rightarrow g^a$$

$$[b]_2 \Rightarrow h^b$$

Matrices A B

$$e: \mathbb{G} \times \mathbb{H} \to \mathbb{G}_T$$

Generators
$$g \in \mathbb{G}, h \in \mathbb{H}$$

$$[a]_1 \Rightarrow g^a$$

$$[b]_2 \Rightarrow h^b$$

Matrices A B

Vectors \mathbf{a}^{\perp} \mathbf{b}^{\perp}

$$e: \mathbb{G} \times \mathbb{H} \to \mathbb{G}_T$$

Generators
$$g \in \mathbb{G}, h \in \mathbb{H}$$
 $[a]_1 \Rightarrow g^a$

$$[a]_1 \Rightarrow g^a$$

$$[b]_2 \Rightarrow h^b$$

Matrices A B

Vectors \mathbf{a}^{\perp} \mathbf{b}^{\perp}

Basis:
$$([A]_1, [b^{\perp}]_1)$$
 $([B]_2, [a^{\perp}]_2)$

$$e: \mathbb{G} \times \mathbb{H} \to \mathbb{G}_T$$

Generators
$$g \in \mathbb{G}, h \in \mathbb{H}$$

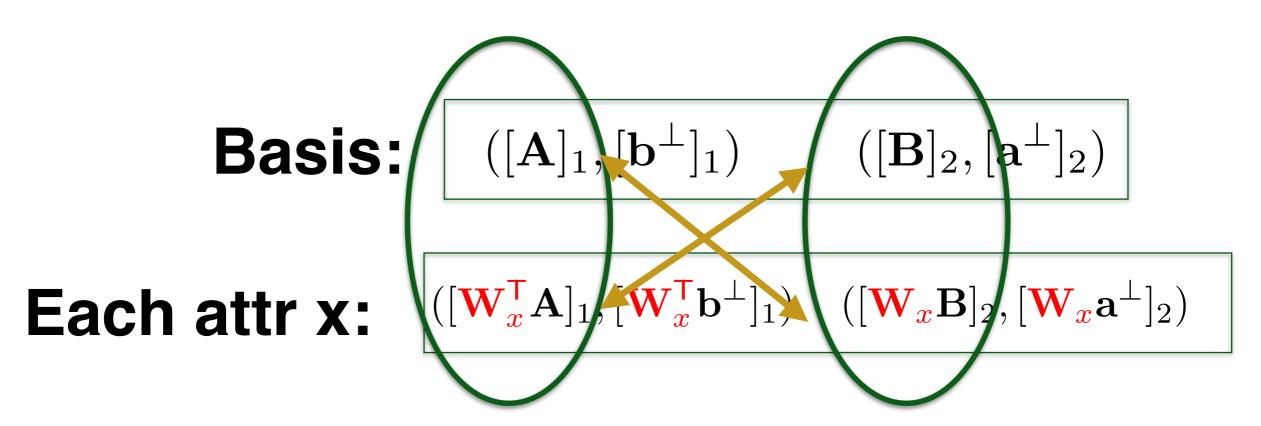
$$[a]_1 \Rightarrow g^a$$

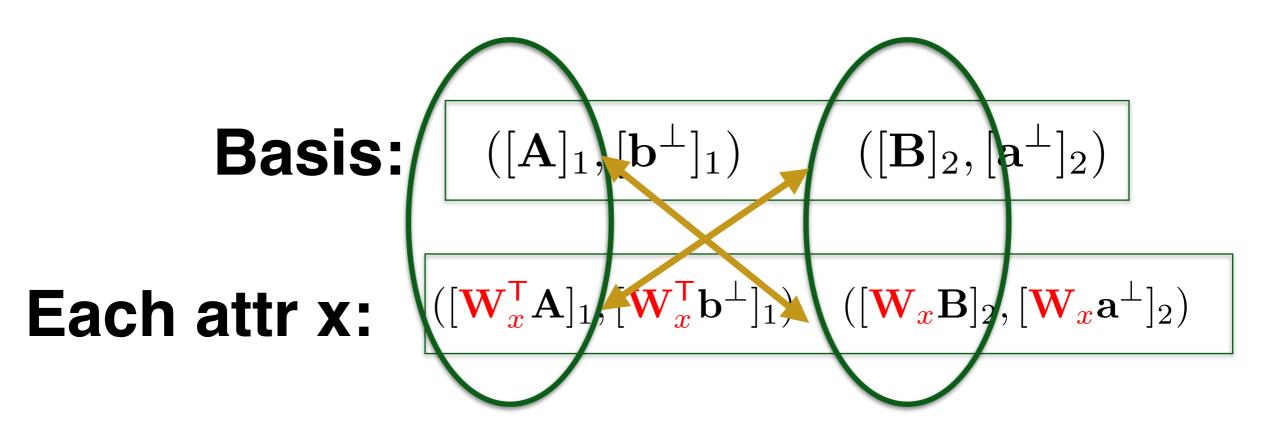
$$[b]_2 \Rightarrow h^b$$

Matrices A B

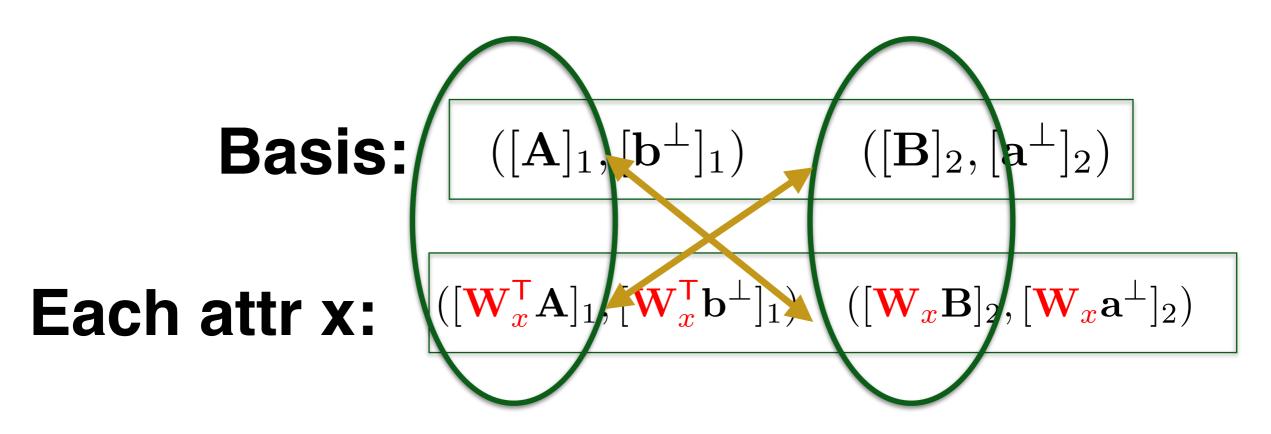
Vectors \mathbf{a}^{\perp} \mathbf{b}^{\perp}

Basis:
$$([A]_1, [b^{\perp}]_1)$$
 $([B]_2, [a^{\perp}]_2)$

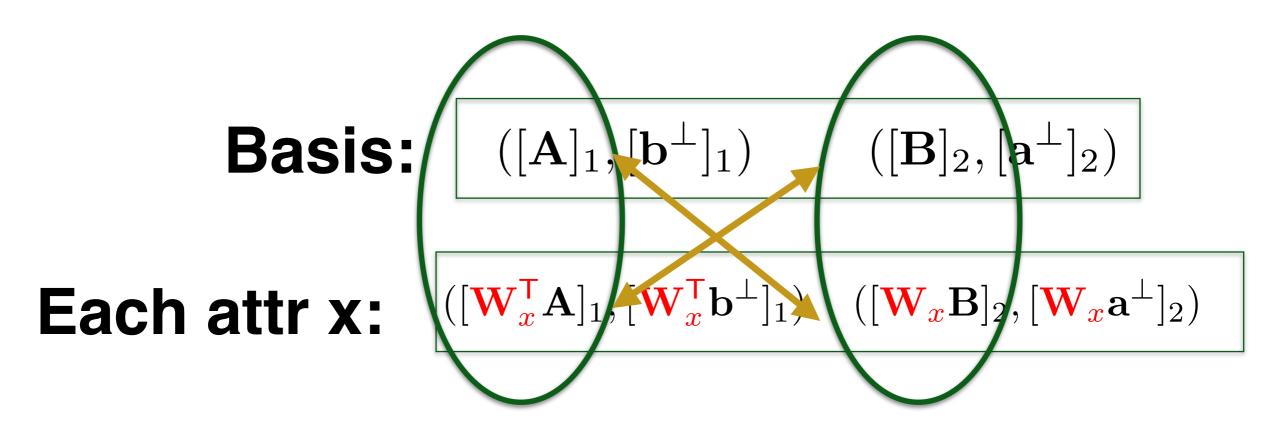

Each attr x:


$$\left| ([\mathbf{W}_{\boldsymbol{x}}^{\mathsf{T}} \mathbf{A}]_1, [\mathbf{W}_{\boldsymbol{x}}^{\mathsf{T}} \mathbf{b}^{\perp}]_1) \quad ([\mathbf{W}_{\boldsymbol{x}} \mathbf{B}]_2, [\mathbf{W}_{\boldsymbol{x}} \mathbf{a}^{\perp}]_2) \right|$$

Basis:
$$([\mathbf{A}]_1, [\mathbf{b}^{\perp}]_1)$$
 $([\mathbf{B}]_2, [\mathbf{a}^{\perp}]_2)$


Each attr x:

$$\left| ([\mathbf{W}_{\boldsymbol{x}}^{\mathsf{T}} \mathbf{A}]_1, [\mathbf{W}_{\boldsymbol{x}}^{\mathsf{T}} \mathbf{b}^{\perp}]_1) \quad ([\mathbf{W}_{\boldsymbol{x}} \mathbf{B}]_2, [\mathbf{W}_{\boldsymbol{x}} \mathbf{a}^{\perp}]_2) \right|$$



$$(\mathbf{W}_x^\mathsf{T} \mathbf{A})^\mathsf{T} \mathbf{B} = \mathbf{A}^\mathsf{T} (\mathbf{W}_x \mathbf{B})$$

$$(\mathbf{W}_x^\mathsf{T} \mathbf{A})^\mathsf{T} \mathbf{B} = \mathbf{A}^\mathsf{T} (\mathbf{W}_x \mathbf{B})$$

$$(\mathbf{W}_{\boldsymbol{x}}^{\mathsf{T}}\mathbf{A})^{\mathsf{T}}\mathbf{B} \qquad \mathbf{A}^{\mathsf{T}}(\mathbf{W}_{\boldsymbol{y}}\mathbf{B})$$

$$(\mathbf{W}_x^\mathsf{T}\mathbf{A})^\mathsf{T}\mathbf{B} = \mathbf{A}^\mathsf{T}(\mathbf{W}_x\mathbf{B})$$
 Associativity
$$(\mathbf{W}_x^\mathsf{T}\mathbf{A})^\mathsf{T}\mathbf{B} = \mathbf{A}^\mathsf{T}(\mathbf{W}_x\mathbf{B})$$

Small universe schemes

$$[\mathbf{W}_1^\mathsf{T}\mathbf{A}]_1,\ldots,[\mathbf{W}_\ell^\mathsf{T}\mathbf{A}]_1$$
 in public key

Small universe schemes

$$[\mathbf{W}_1^\mathsf{T}\mathbf{A}]_1,\ldots,[\mathbf{W}_\ell^\mathsf{T}\mathbf{A}]_1$$
 in public key

Arbitrary attributes?

Small universe schemes

$$[\mathbf{W}_1^\mathsf{T}\mathbf{A}]_1,\ldots,[\mathbf{W}_\ell^\mathsf{T}\mathbf{A}]_1$$
 in public key

Arbitrary attributes?

Hash function **H**

$$[\mathbf{W}_x^\mathsf{T}\mathbf{A}]_1$$
 in ciphertexts

$$[\mathbf{W}_x\mathbf{B}]_2$$
 in keys

Hash function **H**

 $[\mathbf{W}_x^\mathsf{T}\mathbf{A}]_1$ in ciphertexts

 $[\mathbf{W}_x\mathbf{B}]_2$ in keys

Problems:

Hash function **H**

 $[\mathbf{W}_x^\mathsf{T}\mathbf{A}]_1$ in ciphertexts

 $[\mathbf{W}_x\mathbf{B}]_2$ in keys

Problems:

- Type-III setting: G, ℍ different structure

Hash function **H**

 $[\mathbf{W}_x^\mathsf{T}\mathbf{A}]_1$ in ciphertexts

 $[\mathbf{W}_x\mathbf{B}]_2$ in keys

Problems:

- Type-III setting: G, ℍ different structure
- Discrete logs should be hidden

Hash function **H**

 $[\mathbf{W}_x^\mathsf{T}\mathbf{A}]_1$ in ciphertexts

 $[\mathbf{W}_x\mathbf{B}]_2$ in keys

Problems:

- Type-III setting: G, ℍ different structure
- Discrete logs should be hidden
- Use ${\bf H}$ to generate $[{\bf W}_x^{\sf T}{\bf A}]_1$ How to generate $[{\bf W}_x{\bf B}]_2$ without explicit knowledge of ${\bf W}_x$

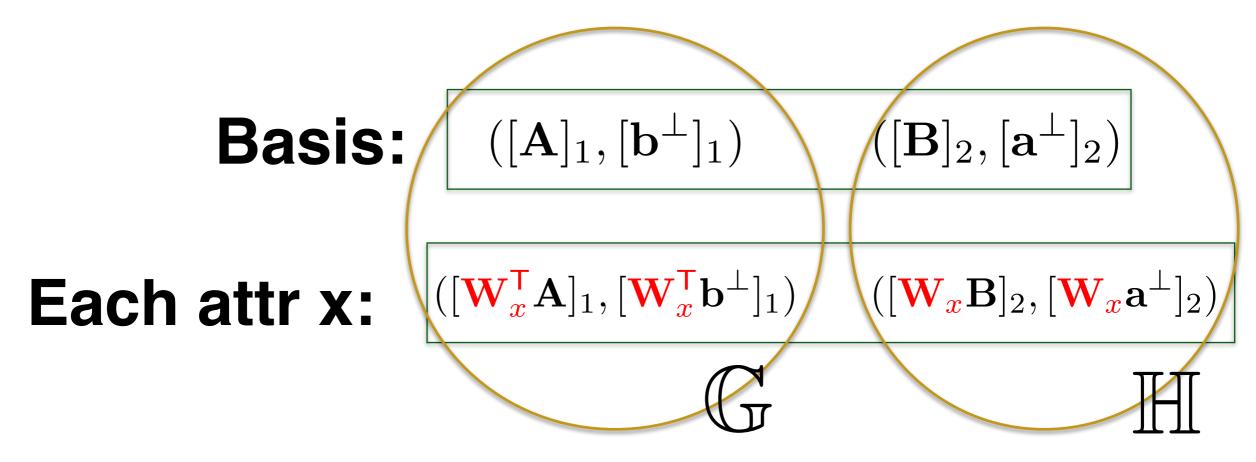
 g^{t_x} in ciphertexts

 g^{1/t_x} in keys

 g^{t_x} in ciphertexts g^{1/t_x} in keys part of the public key

 g^{t_x} in ciphertexts g^{1/t_x} in keys part of the public key master key has t_x

 g^{t_x} in ciphertexts g^{1/t_x} in keys part of the public key master key has t_x


 g^{t_x} derived directly from \mathbf{H} so that t_x is not available

Basis:
$$([\mathbf{A}]_1, [\mathbf{b}^{\perp}]_1)$$
 $([\mathbf{B}]_2, [\mathbf{a}^{\perp}]_2)$

Each attr x:

$$\left| ([\mathbf{W}_{x}^{\mathsf{T}} \mathbf{A}]_{1}, [\mathbf{W}_{x}^{\mathsf{T}} \mathbf{b}^{\perp}]_{1}) \right| ([\mathbf{W}_{x} \mathbf{B}]_{2}, [\mathbf{W}_{x} \mathbf{a}^{\perp}]_{2})$$

$$\mathbf{(W}_{x}^{\mathsf{T}}\mathbf{A})^{\mathsf{T}}\mathbf{B}=\mathbf{A}^{\mathsf{T}}(\mathbf{W}_{x}\mathbf{B})$$
 Associativity

$$\mathbf{W}_{x}^{\mathsf{T}}\mathbf{A})^{\mathsf{T}}\mathbf{B}=\mathbf{A}^{\mathsf{T}}(\mathbf{W}_{x}\mathbf{B})$$
 Associativity

Basis:

$$([\mathbf{A}]_1, [\mathbf{b}^{\perp}]_1)$$
 $([\mathbf{B}]_2, [\mathbf{a}^{\perp}]_2)$

$$([\mathbf{B}]_2,[\mathbf{a}^\perp]_2)$$

Each attr x:

$$([\mathbf{W}_{x}^{\mathsf{T}}\mathbf{A}]_{1}, [\mathbf{W}_{x}^{\mathsf{T}}\mathbf{b}^{\perp}]_{1}) \qquad ([\mathbf{W}_{x}\mathbf{B}]_{2}, [\mathbf{W}_{x}\mathbf{a}^{\perp}]_{2})$$

$$\mathbf{(W}_{x}^{\mathsf{T}}\mathbf{A)}^{\mathsf{T}}\mathbf{B}=\mathbf{A}^{\mathsf{T}}(\mathbf{W}_{x}\mathbf{B})$$
 Associativity

 $\mathbf{W}_{x}^{\mathsf{T}}\mathbf{A}, \mathbf{W}_{x}\mathbf{B}$: through **H**?

 $\mathbf{W}_{x}^{\mathsf{T}}\mathbf{A}, \mathbf{W}_{x}\mathbf{B}$: through **H**?

$$\mathbf{H} \longrightarrow [\mathbf{W}_x^\mathsf{T} \mathbf{A}]_1$$

 $\mathbf{W}_{x}^{\mathsf{T}}\mathbf{A}, \mathbf{W}_{x}\mathbf{B}$: through **H**?

$$\mathbf{H} \longrightarrow [\mathbf{W}_x^\mathsf{T} \mathbf{A}]_1 \qquad [\mathbf{W}_x \mathbf{B}]_1 \text{ without } \mathbf{W}_x$$
?

 $\mathbf{W}_{x}^{\mathsf{T}}\mathbf{A}, \mathbf{W}_{x}\mathbf{B}$: through **H**?

$$\mathbf{H} \longrightarrow [\mathbf{W}_x^\mathsf{T} \mathbf{A}]_1 \qquad [\mathbf{W}_x \mathbf{B}]_1 \text{ without } \mathbf{W}_x$$
?

Different approach: generate keys with $[\mathbf{W}_x^\mathsf{T} \mathbf{A}]_1$, \mathbf{B}

 $\mathbf{W}_{x}^{\mathsf{T}}\mathbf{A}, \mathbf{W}_{x}\mathbf{B}$: through **H**?

$$\mathbf{H} \longrightarrow [\mathbf{W}_x^\mathsf{T} \mathbf{A}]_1 \qquad [\mathbf{W}_x \mathbf{B}]_1 \text{ without } \mathbf{W}_x ?$$

Different approach: generate keys with $[\mathbf{W}_x^\mathsf{T} \mathbf{A}]_1$, \mathbf{B}

Keys have different structure vs CGW

Performance Benefit

Basis:
$$([{\bf A}]_1,[{\bf b}^{\perp}]_1)$$
 $([{\bf B}]_2,[{\bf a}^{\perp}]_2)$

Each attr x:

$$([\mathbf{W}_{x}^{\mathsf{T}}\mathbf{A}]_{1},[\mathbf{W}_{x}^{\mathsf{T}}\mathbf{b}^{\perp}]_{1}) \qquad ([\mathbf{W}_{x}\mathbf{B}]_{2},[\mathbf{W}_{x}\mathbf{a}^{\perp}]_{2})$$

Performance Benefit

Basis:
$$([{\bf A}]_1,[{\bf b}^{\perp}]_1)$$
 $([{\bf B}]_2,[{\bf a}^{\perp}]_2)$

Each attr x:

$$([\mathbf{W}_{\boldsymbol{x}}^{\mathsf{T}}\mathbf{A}]_1, [\mathbf{W}_{\boldsymbol{x}}^{\mathsf{T}}\mathbf{b}^{\perp}]_1) \qquad ([\mathbf{W}_{\boldsymbol{x}}\mathbf{B}]_2, [\mathbf{W}_{\boldsymbol{x}}\mathbf{a}^{\perp}]_2)$$

Almost all of ciphertext and key in G

• Set-up time is constant.

- Set-up time is constant.
- Ciphertexts and keys:
 - 3 elements from ℍ
 - 3 elements from \mathbb{G} for every attribute

- Set-up time is constant.
- Ciphertexts and keys:
 - 3 elements from ℍ
 - 3 elements from \mathbb{G} for every attribute
- Decryption only 6 pairing operations
 - ullet Many exponentiations, but all in ${\mathbb G}$
 - Lewko Waters' conversion

Implement, and evaluate

Implementation

Python 2.7.10 using Charm 0.43 [AGMPRGR13]

Implementation

- Python 2.7.10 using Charm 0.43 [AGMPRGR13]
- MNT224 curve for pairings

Implementation

- Python 2.7.10 using Charm 0.43 [AGMPRGR13]
- MNT224 curve for pairings
- Macbook Pro laptop
 - 2.7 GHz Intel Core i5, 8GB RAM

Group Operations

(in milliseconds)

Groups	Multiplication	Exponentiation	Hash
G	.009	1.266	.099
H	.065	14.412	76.767
\mathbb{G}_T	.020	3.356	

Pairing 10.243

Access Policies

 $\mathsf{attr}_1 \; \mathsf{AND} \; \mathsf{attr}_2 \; \mathsf{AND} \; \ldots \; \mathsf{AND} \; \mathsf{attr}_n \; [\mathsf{GHW11}]$

Access Policies

 $\mathsf{attr}_1 \; \mathsf{AND} \; \mathsf{attr}_2 \; \mathsf{AND} \; \dots \; \mathsf{AND} \; \mathsf{attr}_n \; [\mathsf{GHW11}]$

 $10, 20, \dots, 100$

Access Policies

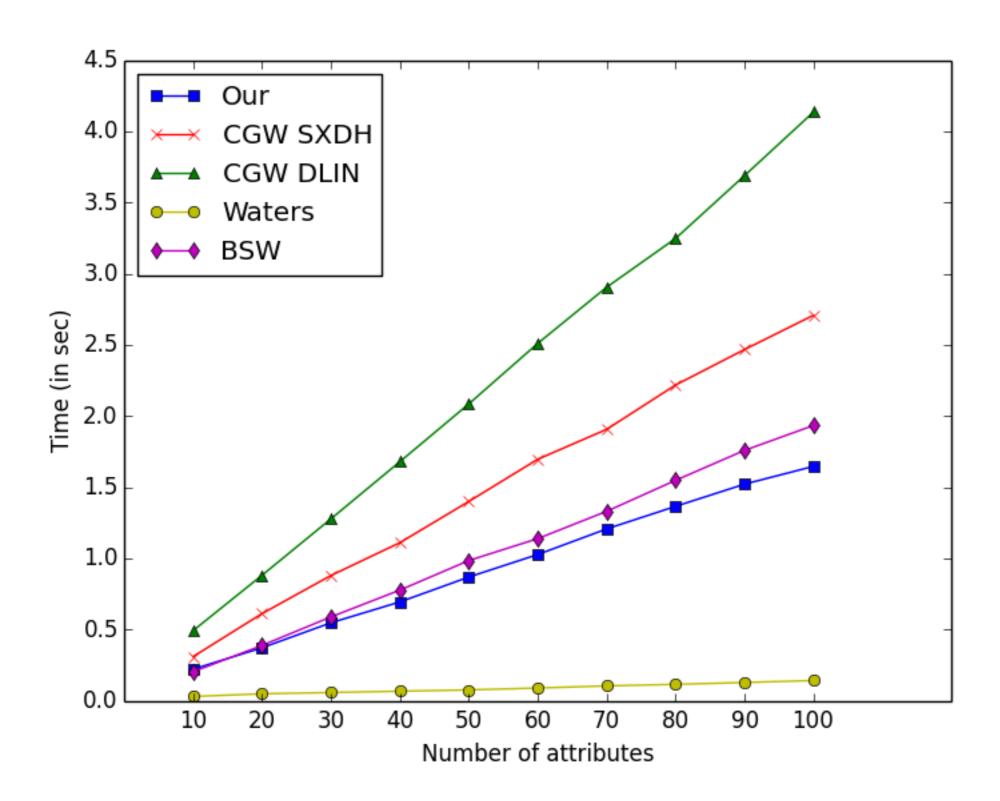
 $\mathsf{attr}_1 \; \mathsf{AND} \; \mathsf{attr}_2 \; \mathsf{AND} \; \dots \; \mathsf{AND} \; \mathsf{attr}_n \; [\mathsf{GHW11}]$

 $10, 20, \ldots, 100$

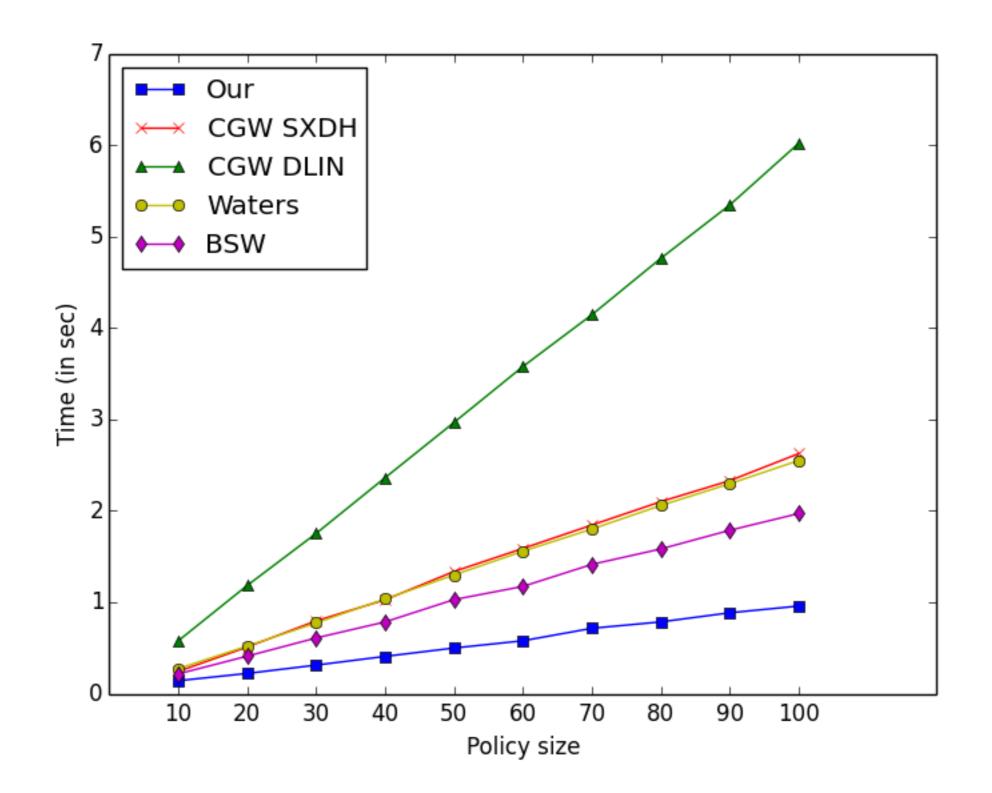
Policies => Monotone Span Program [LW11]

Matrix has 0, 1, -1 entries

Reconstruction coefficients 0 or 1


Ciphertext-Policy ABE

- Bethencourt, Sahai, and Waters (BSW) [SP'07]
- Waters [PKC'11]
- Chen, Gay, and Wee (CGW) [EC'15]
 - 1-linear (SXDH)
 - 2-linear (DLIN)


Set-up Time

Scheme	Uni size	Time
Our	1	0.11s
CGW-1	100	2.23s
CGW-2	100	5.13s
Waters	100	0.64s
BSW	-	0.08s

Key Generation

Encryption

Decryption

Conclusion

• Fast ABE schemes - good security, desirable features

Conclusion

- Fast ABE schemes good security, desirable features
- Clean way to handle negations, multi-use of attributes

Conclusion

- Fast ABE schemes good security, desirable features
- Clean way to handle negations, multi-use of attributes
- Optimize implementations
 - C/C++ vs Python
 - Charm's features
 - Different curve like BN

Thanks, to you

Paper: https://eprint.iacr.org/2017/807

Code: https://github.com/sagrawal87/ABE